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J. Phys. A: Math. Gen., Vol. 11, No. 5, 1978. Printed in Great Britain 

Exact invariants for time-dependent Hamiltonian systems 
with one degree-of-freedom 

Willy Sarlet 
Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent, Krijgslaan 271-S9, 
B-9000 Gent, Belgium 

Received 9 August 1977, in final form 30 December 1977 

Abstract. Generalising the ideas of two previous papers a method is devised for obtaining 
exact invariants for time-dependent Hamiltonian systems with one degree-of-freedom. It 
consists in firstly transforming to a new Hamiltonian which is linear in the momentum 
variable, and secondly in solving the related Hamilton-Jacobi equation. The Hamiltonian 
of an oscillator with a supplementary inverse quadratic potential is treated as an illus- 
trative example. After that, a complete application is given to a class of polynomial 
Hamiltonians, including an interpretation and discussion of the possible extent of the 
results. 

1. Introduction 

In the last ten years, there has been a growing interest in finding exact invariants for 
time-dependent Hamiltonian systems. Apart from their obvious importance in 
obtaining eventually a complete solution to the problem, such invariants appeared to 
be useful in different circumstances. For slowly time-varying oscillatory systems, the 
knowledge of an exact invariant resulted in an easy way of calculating an adiabatic 
invariant to all orders (Lewis 1968); a possibility for comparing exact and adiabatic 
invariants (Symon 1970), and a method for calculating the characteristic exponents of 
the Hill equation (Guyard et a1 1971). The same type of invariants was used in 
quantum mechanics to solve the Schrodinger equation (Lewis and Riesenfeld 1969), 
and to discuss a relationship with the propagator in Feynman’s path integral formula- 
tion (Khandekar and Lawande 1975). Recently, it was shown by Gunther and Leach 
(1977) for a three-dimensional oscillator, and by Leach (1977) for a general n- 
dimensional quadratic Hamiltonian, that this invariant can take over the central role, 
played by the Hamiltonian for autonomous systems, to construct an invariant tensor, 
which in a natural way leads to a non-invariance dynamical symmetry group. 

The starting point of the present investigation is linked to the way in which Lewis 
(1968) obtained his exact invariant for the time-dependent harmonic oscillator, 
namely the application in closed form of Kruskal’s perturbation method (Kruskal 
1962). In the first place we will focus attention on the system of partial differential 
equations for the determination of averaged variables. We will analyse a certain 
decoupling of the characteristic equations of their homogeneous part and derive 
corresponding necessary and sufficient conditions for the Hamiltonian of the system. 
Next, Hamiltonians satisfying these conditions will be shown to be characterised 
alternatively by the property that a canonical transformation exists, reducing them to 
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844 W Sarlet 

a form linear in the new momentum variable. This will lead us to the concept of 
linearisable Hamiltonians and a general method to calculate a related exact invariant. 
The method is first illustrated for the example of an oscillator with an inverse 
quadratic.potentia1 and then fully applied on a class of polynomial Hamiltonians. 

2. Statement of the problem 

Consider the first-order system of differential equations 

(1) 
dt 
ds € 9  
-= dq aH dp aH 

ds aq ds ap -= - - ( q , p , t ) ,  (9’ P ,  t>, -=- 

with E small, and under the assumption that a continuum of periodic solutions exists 
for E = 0. This is the general form of a Hamiltonian system with one degree-of- 
freedom, depending on t through slowly varying parameters, and for which Kruskal’s 
averaging method can be used to calculate successively an adiabatic invariant to all 
orders. In applying this method it is convenient to introduce first an intermediate set 
of variables, 

Y = f ( H ( q ,  P? t ) ,  f ) ,  v = v(q, p ,  t ) ,  (2) 
where v is an angle-like variable. The new equations then have the form 

ay  dy - E - = E g ( y ,  v, t ) ,  ds at 
- _  

where [ . , . ] is the Poisson bracket, and g and $ are periodic functions of v. The 
special form of the transformation formula of y is of course precisely chosen to make 
dy/ds of order E .  Following the general idea of any averaging method m e  then tries 
to find a transformation to new variables z ,  4 (‘nice variables’ in Kruskal’s 
terminology) such that the right-hand sides of the new equations do not depend on the 
angle variable 4. This means that the functions z ( y ,  v, t )  and + ( y ,  v, t )  will have to 
satisfy an equation of the type 

where G eventually can be chosen as simple as possible. Kruskal’s method provides 
an iterative technique to solve this problem using series expansions in powers of the 
small parameter E for all quantities involved. Moreover, using the expansions of z and 
4, an adiabatic invariant can be calculated to all orders from the action integral over a 
ring of constant z ,  

J = f d4.  

It is clear that the method will be applicable in closed form as soon as the partial 
differential equations of type (4) are solvable in closed form. An important 
simplification towards the achievement of this objective is obtained when the charac- 
teristic equations of the homogeneous part of (4) are uncoupled, or equivalently when 
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system (3) is uncoupled. Now a periodic dependence of g and 4 on the angle variable 
v is inherent in the method, So a non-trivial uncoupling takes place when 9 is a 
function of v and t only, 

9 = 9(v ,  t ) .  (6) 

Our first problem therefore will consist in identifying necessary and sufficient condi- 
tions for a Hamiltonian H ( t ,  q, p )  in order to allow the construction of variables ( y,  v) 
of the form (2) such that 4 as defined in (3) has the property (6). For Hamiltonians of 
the resulting class there is a good chance to solve equations (4) in Kruskal’s method. 
However, we will look for a more direct method to obtain a partial differential 
equation of type (4) which enables the calculation of an exact invariant. 

Remark. In the case of the harmonic oscillator (Lewis 1968) system (3) did not only 
have property (6),  but also the property 

d Y ,  v, t)=gl(Y)gz(v, f ) ,  (7 1 
which resulted in a solution of equations (4) by separation of variables. This feature 
was fully explored in two of our previous papers (Sarlet 1975a,b), but the cor- 
responding class of Hamiltonians appears to be too restrictive now. 

3. General theory 

The system (3) will have property (6 )  if and only if a functional dependence comes 
about between dv/ds and v, with t as parameter. This is equivalent to the vanishing of 
a Jacobian, which in Poisson bracket notation (both concepts coincide for one degree- 
of-freedom) yields, 

[[H, v], v ]  + E [  :, v] = 0.  

If v(q,  p ,  t )  is required to be independent of E ,  both terms must vanish separately. We 
then havet, 

for some function x, and with the help of this x, 

So we obtain the following. 

Proposition 1. A Hamiltonian H(q,  p, t )  allows a transition to new coordinates ( y, U )  
of the form (Z), such that the new equations have property (6), if and only if there 
exists a function x(q,  p )  satisfying equation (10). 

Next we introduce the following concept. 

t If the case av/ap = 0, which will fit in with the theory later on, is excluded, then the if and only if condition 
is true. 
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Definition. A Hamiltonian H(q, p ,  t )  is linearisable if a time-independent canonical 
transformation exists, reducing it to a linear function of the new momentum variable. 

An alternative characterisation of the Hamiltonians in proposition 1 is then provided 
by the following proposition. 

Proposition 2. 
the class of non-triviallyt linearisable Hamiltonians. 

The class of Hamiltonians determined by proposition 1 coincides with 

Proof. 
transformation 

A Hamiltonian is linearisable if and only if after a time-independent canonical 

(4, P)-(Q, P )  
the equation for Q becomes of the form 

which is equivalent to 

[y, Q] = 0, or [[H, Q], Q] = 0. 

If such a reduction is possible with aQ/ap = 0, it means that the original Hamiltonian 
already was linear in p and thus is trivially linearisable. Excluding this case, we can 
Put 

so that equation (11) is equivalent to equation (10). This completes the proof. 

Now, in applying Kruskal’s method an exact invariant should follow from the solution 
of the linear partial differential equations (4). But for the class of linearisable Hamil- 
tonians, a linear partial differential equation leading to invariants of the system is 
immediately at hand, namely the Hamilton-Jacobi equation corresponding to the new 
Hamiltonian. Therefore, instead of using Kruskal’s method we propose a calculation 
along the following lines. Given a Hamiltonian H(q, p ,  t ) :  

(i) Investigate whether or not H is linearisable. This requires the determination 

(ii) With this x(q,  p ) ,  find a particular solution Q(q, p )  of equation (12). 
(iii) Determine a function P(q, p ) ,  satisfying 

of a particular solution x of equation (lo)$. 

[Q, PI = 1. (13) 
Steps (ii) and (iii) provide us with a canonical transformation reducing the Hamil- 
tonian to the form 

WQ, P, t )  = 4dQ,  t P +  4AQ1 t) .  (14) 

t The non-triviality here means that the linearisation cannot be performed by the identity transformation, 
$Since H depends on t and x does not, this will often lead to a splitting up of equation (10) into several 
parts, which are easy to handle. 
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(iv) Determine a complete integral of the Hamilton-Jacobi equation 

with the property of being linear in the arbitrary constant I. That such an integral 
exists can be sketched as follows. Consider the characteristic equations of (15), 

be the general solution of the first equation in (16) (Cl being an arbitrary constant). 
Then the second equation can be written as 

If its general solution is denoted by 

W =f2(C1, t ) +  C2, 

a complete integral of (15) is given by 

W Q ,  1, t)=fdfl(Q, 0, f>+1f3(fl(Q, 01, (17) 

where I is the arbitrary constant and f3 is an arbitrary function of its argument. 

terms of the original variables. 
(v) Calculate I from the transformation formula P=aW/aQ, and express it in 

Remark. The Hamilton-Jacobi equation associated with the given Hamiltonian can be 
highly non-linear. If a suitable function ,y can be found in the above method, the 
solution of that non-linear equation is in fact replaced by the successive determination 
of a particular solution of a system of linear partial differential equations. This system 
consists of equation (10) (which is more precisely a quasi-linear one), equations (12), 
(13), and finally (15). Note that the calculation of the invariant Z(q, p ,  t )  from (17) is 
again a linear process. 

4. Examples 

4.1. A n  oscillator with inverse quadratic potential 

Consider the Hamiltonian 

H = ip2+$W2(t)q2+ kq-2. 

Equation (10) becomes 

~ ~ ( t ) + 6 k q - ~ + ~ ~ + - ( ~  ax 2 ( f ) q - 2 l ~ q - ~ ) - - p  ax = O .  
aP aq 
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x having to be independent of t, the coefficient of w’( t )  must vanish separately, giving 

x = - P 4 - l  +f(4), 
with a yet arbitrary function f .  

The remaining part of the equation can only be satisfied with a real function f if k 
is negative. 

Putting, 
8k = - a 2 ,  (19) 

we find f = aq-’. 

by 
So, (18) is a linearisable Hamiltonian for negative values of k, and then x is given 

/y = -pq-l +cy4-2. (20) 

The determination of a canonical transformation satisfying (12) and (13) is very simple 
and yields 

(21) Q = - p q - l  +$&q-’, 

K(Q, P, t ) =  P(Q2+u2(t))--$aQ, (22) 

p=’ 2 24 . 
It transforms the Hamiltonian (18) to the form 

for which the associated Hamilton-Jacobi equation is 

A complete integral of this equation, calculated by the method explained above, is 
given by 

W(Q,I ,  r)=I(tan-’ [p(pQ+b)]- l  p-2dt)+%1n [ ~ - ~ + ( p Q + b ) ~ l ,  (24) 

where p ( t )  is a particular solution of the equation 

b + w 2 ( t ) p  = p - 3 .  

From the transformation formula P = a w/aQ, and expressed in terms of the original 
variables, I is easily found to be, 

I = $[p-’q2 + (pp  -&)2  + 2kp2q-’], (26) 

which coincides with the expression given by Khandekar and Lawande (1975). Note 
that it turns out to be irrelevant that the Hamiltonian (18) was only linearisable for 
negative k, since the expression (26) of course remains an exact invariant for positive 
k. 

4.2. Application to a class of polynomial Hamiltonians 

Consider the following class of Hamiltonians, quadratic in the momentum variable: 

H = ;a (r)q kp + b ( t )4  ‘p + c (t )q m.  (27) 
These are polynomial functions of 4 and p if k, 1 and m are positive integers, but in 
fact those constants might so far take any real value. 
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4.2.1. Linearisable Hamiltonians of type (27). Equation (10)  here becomes, 

*($akqk-'pztlbq'-'p +mcqm- l ) - -  ax (aqkp +bq')  
ap a4 

= - $ak (k - 1 )q k - 2 p  - 1 ( I  - 1)bq ' -2p  - m (m - 1)cq m-2 

+ 2,y(akqk-'p + b1ql-l)- aqk,y2. (28)  

We suppose the functions a(t),  b(t) ,  and c ( t )  to be linearly independent, so that their 
coefficients must vanish separately. For a ( t )  we get 

1 zax ax 1 - kqp - - q2p - = - - k (k - 1)p + 2kqpx - q 2x 
2 aP a4 2 

One of the characteristic equations of (29)  immediately yields the first integral 

p2qk  =constant, say c:, (30)  

which permits writing the second characteristic equation as 

(31)  is a Riccati equation. It can be transformed to a linear second-order equation 
(see e.g. Murphy 1960) by the substitution 

(U' = du/dq). (32)  
I k  -1  I x =  -c1q U U 

This new equation, of the form 

2q k ~ ' '  + 3 kq k-' U' + k ( k  - 1 )q k - 2 ~  = 0 

is easily solved, giving 

u(q)=Bqdfk  +A(2-k) - 'q ' -k ,  (33)  

where A and B are constants and we assume for the moment k f 2. Substituting (33)  
in (32), putting C2 =BA-' ,  the general solution for x is obtained when C1 is replaced 
from (30)  and C2 is replaced by an arbitrary function f l  of C1. So, 

X' =~kpq- ' -$pip[ f1(p2qk)qfk  +(2--k)- 'q]- ' .  

The coefficient of b ( t )  in (28)  will disappear if 

ax 
aP a4 

I-qp -q2% = - Z(1-  1)p + 21qx, 

that is for, 

x 2  = zpq-' +f*(Pql)q-2'. 

The coefficient of c ( t )  requires ,y to satisfy 

(34) 

(35)  
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We omit the solution m = 0, since an additive function of time is unimportant in the 
Hamiltonian (27).  The solution of (37)  then is, 

x 3  = - ( m  - l )pq-'+f3(q) ,  (38)  
( f z  and f 3  again are arbitrary functions). 

It is easily seen that a common expression x in equations (34),  (36),  (38)  can only 
be of the form Cpq-' for some constant C. An expression of that type is obtained 
from (34)  in two cases: 

(9  f I =  0, then x = (k  - l)pq-' ,  (39)  

(ii) f;' = 0, then ,y = tkpq-'. (40)  

We keep k arbitrary. In the first case x z  will coincide with (39)  if we choose f z  = 0 and 
1 = k - 1 ,  or 1 = 1 and f z  = (k  - 2)pq. x 3  will coincide with the same expression for the 
choice f 3  = 0, m = 2 - k.  

In the second case, to obtain (40) out of x 2  and x 3  we have to choose f z  = 0 and 
1 = $k, or I = 1 and f z  = (bk - l)pq, together with f 3  = 0 and m = 1 - $k. 

Hence altogether we have four classes of linearisable Hamiltonians of the form 
(27),  namely 

H1 and H2 correspond to (39)  as solution for x,  H3 and H4 correspond to (40).  The 
solution one obtains through a separate calculation for the previously excluded case 
k = 2 is precisely the common form to which all Hamiltonians Hi ( i  = 1 ,  . . . ,4) reduce 
for k = 2. (Note further that the Hamiltonians Hi of course remain linearisable when 
the time-dependent coefficients are no longer linearly independent). 

4.2.2. Transformation to Hamiltonians linear in the momentum variable. For x given 
by (39),  the canonical transformation (we again have to exclude for the moment the 
case k = 2 )  

0 = pq '-I, p = (k  - 2)-'qZ-' (45)  
reduces the Hamiltonians HI and HZ to the following linear expressions in P: 

K1 = (k  -2)P( ta( t )Q2+c( t ) )+b( t )Q,  

K 2 = ( k  - 2 ) P ( $ ~ ( t ) Q ~ + b ( t ) Q + c ( t ) ) .  
(46)  

(47) 

For x given by (40), a canonical transformation satisfying equations (12)  and (13)  is, 

Q = p q f k ,  

It transforms H3 and H4 to 

k 
K3 = [;- l )c ( t )P+&z( t )Qz+ b(t)Q, (49)  
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4.2.3. Exact 
K1 becomes 

P(b( t )Q+c( t ) )+ :a ( t )Q* .  (50) 

invariants for the Hamiltonians Hi. The Hamilton-Jacobi equation for 

aw(al(t)Q2 + c l ( t ) )+  b(t)Q +F = 0, (51) 
aw 

aQ 
where for the sake of simplicity we have put 

U l ( t )  = ;(k - 2)a(t) ,  c 1 ( t )  = ( k  - 2)c( t ) .  

The first characteristic equation of ( 5  l), 

has the general solution, 

tan-' [p'(Q + a; 'p- 'P)]  - alp-' dt  = C1, (53) 

where C1 is an arbitrary constant and p ( t )  is any particular solution of the equation 

(54) 2 -3  -a;'&P +pa1c, = alp . 
With the help of (53), the second characteristic equation, dW/dt = -b ( t )Q ,  can be 
written in the form, 

Without specifying the nature of the functions a l ( t )  and b( t ) ,  it is not possible to give 
an analytic expression for the general solution of equation ( 5 3 ,  except in the special 
case that b ( t )  is proportional to al(t). Indeed, putting 

ba;' = K ~ ,  a constant, (56) 

and 

Y = C1 + { alp-' dt, 

equation ( 5 5 )  becomes 

(57) 

dW=Kld1np-K1 tanvdv. 

The integration is straightforward; in accordance with the ideas explained in 0 3 a 
complete integral of equation (5  1) is given by 

W(Q,I, t ) =  - ; K I  In [ p - ' + p ' ( Q + ~ ; ~ p - ' P ) ~ ]  

+(tan-' [p2 (Q+a; 'p - 'b ) ] - {  alp-'dt). 

Solving the transformation formula P = a W/aQ for I,  we obtain 

I ~ P [ p ~ ' + p ' ( ~ + ~ ~ ' p ~ ' ~ ) ' ] + ~ ~ p ' ( ~ + ~ ~ ' ~ ~ ' ~ ) .  
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Finally, if we put (k - 2 ) ~ 1 =  2 ~ ,  which implies 

K = ba-', (60) 
( k  - 2)1= 11, and make use of the transformation formulae (45), we get the following 
expression for an exact invariant Il of the original Hamiltonian H1 (under the 
restriction (60)): 

I?' = p-'q2-' + q k ( p p  +U; '& '-')' + 2Kpqk-'(pp + U; '& '-'), (61) 
p still being any particular solution of equation (54) (the superscript (1) is added to 
relate Il to the Hamiltonian H1). 

For KZ we have to solve the Hamilton-Jacobi equation 

aw aw 
aQ at 
-(a1Q2 + 2blQ + cl)+-= 0, 

where al(t) = i ( k  - 2)a(t), bt(t) = i ( k  - 2)b(t), cl(t) = ( k  - 2)c(t). A complete integral 
is given by 

w =(tan-' [ p ' ( ~  +a;' (bl + p - ' b ) l -  J a l p - 2  dr), (63) 

where p(t) is a particular solution of 

- a A i 1 @  +p(a1c1 -b:-a;'Ulbl + d l )  = u:p3. (64) 

Putting (k -2)1 = 11, we get the following invariant, expressed in terms of the original 
variables: 

I?) =p-*q2-' +pZq2-'[pqk-' +a;' ( b 1 + p - ' p ) ] 2 .  (65) 

The structure of classes K3 and K4 is essentially different from that of K1 and KZ, the 
difference being that the coefficient of P does not contain a term in Q2. This simplifies 
the problem very much. Indeed, one can simply premise an invariant I linear in P and 
Q. 

This time making use of the transformation formulae (48) and putting I z =  
(ik - 111, fz = (ik - l)f, g2 = (ik - l)g, az = (ik - l ) a ,  6 2  = (ik - l)b, c2 = (ik - l)c, we 
get as invariant for the Hamiltonian H3,  

(66) I2 (3) - - 4  14' +fzpqkk +gz, 

with 

fz = I a2 dt, gz = J (bz-fzc2) dt, (67) 

while the resulting invariant for H4 is, 

rl"' = az(f)q'-k' +Pz(t)pqhk + Yz( f ) ,  (68) 
with 

For the sake of completeness there remains one case to be treated, namely the case 
k = 2. The Hamiltonians Hi ( i  = 1, . . . , 4 )  then all reduce to the form 

H = f a  (t)q'p2 + b(t)qp + c ( t ) .  (70) 
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A solution for x is, 

x = p 4 - I ,  

and the linearising canonical transformation (from equations (12) and (13)) is given by 

Q = qp,  P = In p .  (72) 

K =ia( t )Q2+b( t )Q .  (73) 

If we omit the additive function c ( t )  in (70), the new Hamiltonian becomes 

This is of course a very special case of a Hamiltonian linear in the momentum variable 
P, since it is independent of P. Q is an invariant and the equations of motion for (73) 
can be trivially solved. 

So, apart from the supplementary restriction (60) for HI, we have obtained an 
exact invariant for all our linearisable Hamiltonians of type (27). 

5. Discussion 

In this paper, generalising some of the ideas of two previous articles, we have 
proposed a general procedure for solving time-dependent Hamiltonian systems with 
one degree-of-freedom (or for calculating an exact invariant of the system). The 
method is applicable to a special class of Hamiltonians, called linearisable 
Hamiltonians, and consists in transforming the system first (by a time-independent 
transformation) to a new one with linear Hamiltonian with respect to P, and secondly 
in solving the linear Hamilton-Jacobi equation. Recently another systematic method 
for the same problem was derived by Leach (1977). It is valid for n-dimensional 
Hamiltonian systems but mainly restricted to Hamiltonians which are quadratic in all 
variables. In this method the Hamiltonian is reduced to a similar form with constant 
coefficients by a linear time-dependent canonical transformation. In order to establish 
a relationship between both methods for the application discussed in the previous 
section, we make the following consideration. The canonical transformation, 

P = p q i k ,  Q = ( l - $ J - ) - ’ q l - i k ,  (74) 

reduces the Hamiltonians Hi ( i  = 1,.  . . , 4 )  to the form, 

X I  = $n( t )P2 + b(r)PQ-’ + c(t)Q’, 

Z2 =ta(t)P2+b(r)QP+c(t)Q2,  

2 3  = $a( t )P2 + b ( t ) P + c ( t ) Q ,  
2 -1 - 2a( t )P2  + b(t)QP+ c(t)Q. 

Apart from the first one, these Hamiltonians are quadratic in both Q and P. This 
means that the invariants (65), (66) and (68) could as well be obtained using Leach’s 
method for the Hamiltonians (76), (77), (78) and transforming the results with the aid 
of (74). The Hamiltonian Zl, which is the exception for the above relationship, has a 
different interesting feature. In solving the Hamilton-Jacobi equation (in the case 
ba;’ = K ~ )  for the related Hamiltonian K1, we found a complete integral (58), which is 
very similar in structure to the expression (24), obtained for the example in 0 4.1. 
There is a perhaps rather surprising explanation for this resemblance. From the 
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Hamiltonian (18), assuming again that k is negative so that for example (19) holds, we 
get the following second-order equation of motion in 4 :  

1 2 -3 4 + u 2 ( t ) 4  = -a& 4 . (79) 
Now, putting in X l ,  a( t )= 1, b ( t ) = ; a ,  and c( t )=bw2(t) ,  we get exactly the same 
second-order equation for 0, which means that (18) and (75) then are so called 
'q-equivalent Hamiltonians'. This concept was discussed in various papers, mainly by 
Havas (1957) and Currie and Saletan (1966). Of course, the formulae for the 
invariants I of both Hamiltonians are different, expressed as they are in terms of 4 and 
p .  They would become identical when expressed in terms of 4 and 4. When a given 
Hamiltonian is not linearisable, it is an open question whether one could get around 
the difficulty by passing to a q-equivalent Hamiltonian. 

Finally, something must be said about the nature of the second-order equation for 
4 resulting from Hamiltonians of type (27). This equation of motion (for constant a )  is 
of the form, 

(i'-3k4-142+f(4, t ) = O ,  (80) 
where f(q, t )  depends on the choice of the Hamiltonians in the classes Hi (i = 

Equations containing a quadratic term in 4 naturally arise, e.g. when a two- 
dimensional system is considered, consisting of a single particle which is constrained to 
move on a prescribed smooth curve (for an example see Andronov et a1 1966). The 
time dependence of f(4, t )  in (80) then can come from slowly varying parameters. Let 
us give one example here: the motion of a particle moving on a branch of the cusp 

1 , .  . . ,4). 

x 2 / 3  + y2 /3  = d2/3 , 
can be described by a Hamiltonian of type (27), with k = 2/3. 
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